Physical Chemistry

Conjugation in radical cations of benzene, ethylene, and acetylene derivatives. Nonuniversality of the resonance parameters of group 14 organoelement substituents

A. N. Egorochkin, * S. E. Skobeleva, and T. G. Mushtina

G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 ul. Tropinina, 603600 Nizhnii Novgorod, Russian Federation. Fax: +7 (831 2) 66 1497. E-mail: imoc@infotel.ru

The first vertical ionization potentials I_1 of molecules R_xX (X = Ph, $H_2C=CH$, and HC=C) depend on the joint influence of the inductive, resonance, and polarizability effects of substituents X, which are characterized by parameters σ_I , σ_R^+ , and σ_α , respectively. The mechanism of conjugation in radical cations formed upon ionization of R_xX is changed as compared to neutral R_xX molecules, while the substituent X becomes polarized. The conjugation and polarizability effects are strenthened in the sequence $Ph < H_2C=CH < HC=C$ as R_x changes from Ph to $H_2C=CH$ and HC=C. The σ_R^+ parameters of Si-, Ge-, and Sn-containing substituents X are dependent on the type of R_x but are connected by linear dependences in the series of benzene, ethylene, and acetylene derivatives.

Key words: ionization potential, radical cations, conjugation, polarizability, group 14 substituents, non-universality of resonance parameters.

The mechanism of conjugation of organoelement substituents MR₃ (M = Si, Ge, Sn, and Pb; R are organic radicals) with indicator centers R_{π} (Ph, $H_2C=CH$, HC=C, furyl, thienyl, etc.) in compounds $R_{\pi}MR_3$ is more complex than that in organic derivatives $R_{\pi}R$. The substituent MR₃ exhibits simultaneously acceptor (d, π -conjugation, i.e., the interaction of nd orbitals of M and σ^* -orbitals of the M—C bond with R_{π}) and donor (σ , π -conjugation, i.e., the interaction of σ -orbitals of the M—C bond with R_{π}) properties toward the R_{π} fragment. Only σ , π -conjugation occurs in compounds $R_{\pi}CH_2MR_3$. The quantitative characteristics of conjugation, i.e., parameters σ_R of substituents MR₃ and CH_2MR_3 , are not universal and depend on both the type of fragment R_{π} and charges on its atoms. In the case of a small charge on R_{π}

(0.01e; H-complexes of $R_{\pi}MR_3$ and $R_{\pi}CH_2MR_3$ with phenol) and a large charge (>0.9e; the excited state of $R_{\pi}MR_3$ complexes with iodine and tetracyanoethylene), the degree of conjugation in isolated neutral molecules is characterized by parameters σ_R^0 , σ_R , and σ_R^+ , respectively, which can differ in both magnitude and sign. The main reason for these distinctions is the dependence of σ_{π} -conjugation on the charge on R_{π}^{-1-6} These problems were studied in detail for benzene derivatives ($R_{\pi} = Rh)^{1-7}$ and only fragmentarily for compounds with other type of $R_{\pi}^{-1,3-5,8}$ because of scarce information on the experimental values of σ_R^0 , σ_R , and σ_R^+ . Recently, we have shown that information on the σ_R^+ parameters of substituents can be obtained from the first vertical ionization potentials I_1 of organoelement compounds.

The aim of this work is to study inductive, resonance, and electrostatic interactions in radical cations formed upon separation of an electron from the highest occupied molecular orbitals (HOMOs) of molecules R_xX $(R_{\star} = Ph, H_2C=CH, and HC = C; and X are substitu$ ents), to calculate the values of σ_R^+ parameters of the substituents $X (X = MR_3 \text{ and } CH_2MR_3)$, and to establish the dependence of σ_R^+ on the type of R_π using the I_1 ionization potentials.

Procedure for Calculations

The energy of conjugation between R_{π} and X was estimated using the PMO method.7,8

Correlation equations were calculated using the standard STATGRAPHICS 3.0 program package on an IBM PC/AT 286. The data were processed by the least squares method at a confidence level of 95%.

Results and Discussion

The first vertical ionization potentials I_1 of molecules $R_{\pi}X$ (R_{π} = Ph and HC=C; X are substituents) measured by the photoelectron spectroscopy (PES) method with an accuracy of 0.01 eV are listed in Table 1. The use of I_1 values for studying the intramolecular interactions is based on the following grounds.

In the case of the PES method, irradiation of a neutral molecule M by a photon with the energy hv results in the formation of an M+ radical cation. 18

$$M + hv \longrightarrow M^{+} + e^{-}. \tag{1}$$

By definition, the I_1 value is the difference between the total energies of the radical cation, in which an electron is separated from the HOMO, and the neutral molecule.

$$I_1 = E^{+} \cdot_{tot} - E_{tot} \tag{2}$$

The relaxation (R) and correlation (C) energies, which characterize changes in the composition of the wave functions in M⁺ as compared to M, should be taken into account in quantum-chemical calculations of $E^{+} \cdot_{\text{tot.}}^{-18,19}$ The expression for I_1 can be written¹⁹ as

$$I_1 = I_1^0 - R + C. (3)$$

The Koopmans approximation 18,19

$$I_{l}^{0} = -E_{HOMO} \tag{4}$$

ignores the contributions of R and C, i.e., in the general case the experimental I_1 values cannot be used as a measure of the HOMO energy (E_{HOMO}).

The resonance effect of substituents X and E_{HOMO} of neutral molecules $R_{\pi}X$ ($R_{\pi} = Ph$, $H_2C=CH$, HC=C) is described by the σ_R^0 constants.²⁰ Unlike M, radical cations M⁺⁺ have electron-deficient centers. It has been shown in the studies of heterolytic and several homolytic processes²¹ as well as charge-transfer complexes⁵ that the conjugation of the substituents with such centers is characterized by electrophilic σ_R^+ constants. An adequate description of the resonance effect of substituents on the I_1 value of benzene and ethylene derivatives (see Refs. 7 and 8, respectively) can be achieved only by using σ_R^+ constants rather than σ_R^0 constants. Hence, the Koopmans approximation (4) is too rough for these compounds. However, it is likely that the conjugation in M^{+} is satisfactorily described by σ_{R}^{+} constants taking into account the resonance component of R and C contributions in formula (3). Therefore, σ_1 and σ_R^+ constants were used^{8,16} in estimating the inductive and resonance effects of organic substituents X on the I_1 values in compounds PhX and HC=CX as compared to compounds H2C=CHX.8

The HOMOs of compounds under consideration (except for acetylene derivatives 25 and 26 9) are the π -HOMO of ethylene (E = -11.40 eV) and the e_{ig} orbital of benzene (E = -9.24 eV) perturbed by the interactions with substituents X. For acetylene derivatives 25 and 26, the symbol I, II in Table 1 is retained by convention, since the second ionization potentials (11.57 and 11.40 eV) correspond to the $\pi(C=C)$ -orbitals in these molecules.9

Among the studied compounds PhX, the strongest p,π -conjugation between the substituent and the π -system occurs in aniline and its N-methyl derivatives (compounds 16-18 in Table 1). Data on the structure of the HOMOs of molecules 16-18 are contradictory. The HOMOs of these molecules are formed^{9,12,22,23} by mixing the orbital of the lone electron pair of the nitrogen atom and the π_s orbital of the benzene ring with symmetry b_1 . The contribution of the $2p_{\pi}$ orbital of the N atom to the aniline HOMO is equal to 40%, 22 whereas the I_1^{1} ionization potentials of molecules 16-18 correspond to the π -type HOMOs. On the contrary, it had been assumed in early studies^{14,24} that predominant contributions to the HOMOs of molecules 16-18 come from the nitrogen atoms and, therefore, the I_1^{-1} values can be considered as corresponding to the lone electron pair of nitrogen. We believe that the opinion of the authors of the later studies^{9,12,22,23} is more correct.

The following relationships are valid for ionization potentials of benzene $(I_1^{\ i}, \text{ compounds } 1, 2, 4-8, \text{ and } 11-29)$, ethylene $(I_1^{\ ill}, \text{ according to the literature data}^8)$, and acetylene $(I_1^{11}, compounds 1-4, 6-10, 12, 14, 15,$ 21-26, and 28) derivatives containing no substituents MR_3 (M = Si, Ge, Sn):

$$I_1^{\rm I} = 9.10 + 0.89\sigma_{\rm p}^{+}$$
 (5)
($S_a = 0.03$, $S_b = 0.05$, $S_{\rm Y} = 0.16$, $r = 0.969$, $n = 26$),

$$I_1^{\text{III}} = 10.14 + 1.34\sigma_p^+$$

 $(S_a = 0.04, S_b = 0.09, S_Y^- = 0.21, r = 0.950, n = 27),$

$$I_1^{11} = 10.63 + 1.72\sigma_p^+$$

 $(S_a = 0.08, S_b = 0.24, S_Y = 0.36, r = 0.871, n = 19),$ (7)

$$I_1^{\dagger} = 9.03 + 1.17\sigma_1 + 0.83\sigma_R^{\dagger}$$
 (8)
 $(S_a = 0.04, S_b = 0.14, S_c = 0.05, S_Y = 0.14, r = 0.972, n = 26).$

$$I_1^{111} = 10.09 + 1.57\sigma_1 + 1.29\sigma_R^+$$
 (9)
 $(S_a = 0.06, S_b = 0.20, S_c = 0.10, S_Y = 0.21, r = 0.949, r = 27)$

$$I_1^{\text{II}} = 10.63 + 1.72\sigma_1 + 1.72\sigma_R^+$$
 (10)
 $(S_a = 0.13, S_b = 0.42, S_c = 0.41, S_Y = 0.37, r = 0.853, n = 19).$

The low correlation coefficients r in Eqs. (5)—(10) point to the fact that not only the inductive and resonance effects of organic substituents X characterized by

Table 1. The first vertical ionization potentials of molecules PhX $(I_1^{\ l})$ and HC=CX $(I_1^{\ l})$, energies of perturbation $\delta E^{\ l}$ and $\delta E^{\ l}$, and g-parameters of substituents X

Com-	х	I_i^{1a}	I _I II b	δ <i>E</i> ¹	δ <i>Ε</i> ⁽¹	a_{l_c}	σ _R + c	σ _p + c	σ _α d
pound		eV							
1	Н	9.24	11.40	0	0	0	0	0	0
2	Me	8.72	10.36	0.32	0.45	-0.05	-0.26	-0.31	-0.35
3	Et		10.18		0.42	-0.05	-0.25	-0.30	0.49
4	Pr	8.73	10.09	0.24	0.43	-0.05		-0.30	0.54
5	Pr ⁱ	8.73		0.22		-0.03		-0.28	-0.62
6	Prsec	8.61	9.58	0.33	0.83	-0.04	-0.37	-0.41	-0.62
7	Bu	8.69	10.05	0.25	0.43	-0.05	-0.25	-0.30	-0.57
8	Bu ^t	8.74	9.92	0.11	0.26	-0.07	-0.19	-0.26	-0.75
9	C_6H_{13}		10.00		0.46	-0.05	-0.25	-0.30	-0.58
10	cyclo-C6H11		9.92		0.30	-0.02	-0.27	-0.29	-0.62
11	CH,CH=CH,	8.65	~	0.29		-0.06	-0.16	-0.22	-0.57
12	СН⁵ОН	8.90	10.50	0.22	0.29	0.03	~0.07	-0.04	-0.36
13	CH ₂ OMe	9.12	~	-0.03		0.03	-0.07	-0.04	-0.42
14	CH ₂ Cl	9.27	10.76	-0.13	-0.06	0.13	-0.14	-0.01	-0.54
15	CH ₂ Br	9.23	10.65	-0.11	-0.04	0.14	-0.12	0.02	-0.61
16	NH_2	8.05		1.20		0.08	-1.38	-1.30	-0.16
17	NHMe	7.65	-	1.43	_	-0.03	-1.78	-1.81	-0.30
18	NMe ₂	7.45		1.76	_	0.15	~1.85	-1.70	-0.44
19	OH T	8.56		1.00	_	0.33	-1.25	-0.92	-0.03
20	OMe	8.42		1.04		0.29	-1.07	-0.78	-0.17
21	F	9.20	11.26	0.54	0.79	0.45	~0.52	-0.07	0.13
22	Cl	9.07	10.58	0.41	0.58	0.42	-0.31	0.11	-0.43
23	Вг	9.04	10.31	0.40	0.64	0.45	-0.30	0.15	~0.59
24	CN	9.71	11.60	~0.15	-0.39	0.51	0.15	0.66	-0.46
25	СНО	9.59	11.57	-0.21	-0.54	0.33	0.40	0.73	-0.46
26	СООН	9.60	11.40	-0.16	-0.18	0.34	0.08	0.42	0.34
27	COOMe	9.50		-0.13		0.34	0.14	0.48	-0.49
28	CF ₃	9.86	12.10	-0.34	-0.70	0.38	0.23	0.61	-0.25
29	NO_2	9.99	_	-0.21		0.65	0.14	0.79	-0.26
30	SiH ₃	2.18	10.73	-0.23	-0.27	-0.04	0.03° (0.13)	$-0.01^{e} (0.09)^{f}$	0.59
31	SiMe ₃	8.94	10.18	~0.15	-0.03	-0.15	0.02° (0)f	$-0.13^{\circ} (-0.15)^{\circ}$	-0.72
32	GeMe ₃	8.95	10.00	-0.07	0.37		-0.11° (~0.22)	$-0.21^{\circ} (-0.33)^{\circ}$	0.60
33	SnMe ₃	8.75		0.11		-0.13	-0.21°	-0.34	-0.60
34	SnEt ₃		9.00		0.63	-0.15	(−0.36) ^f	(-0 .51) ^f	-1.06
35	PbMe ₃	8.54		0.33		-0.12	-0.26°	-0.38°	-0.60
36	CH ₂ SiMe ₃	8.42	9.04	0.49	1.30		-0.49° (-0.74)	-0.54° (-0.79)	-0.66
37	$C(SiMe_3)_3$	8.10		0.55	_	-0.05	-0.63e	-0.68°	-1.28
38	CH ₂ GeMe ₃	8.40		0.54	-	-0.04	-0.59	-0.63°	-0.61
39	CH ₂ SnMe ₃	8.21		0.72		-0.05	-0.76°	-0.81	-0.61

^a The values of I_1^1 for compounds 1-29 were taken from Ref. 9; those for compounds 30, 36, and 37 were taken from Ref. 10. The values of I_1^{-1} for compounds 31-33 and 35 were taken from Ref. 11; those for compounds 38 and 39 were taken from Ref. 12. ^b The values of I_1^{11} for compounds 1-3, 8, 12, 14, 15, 21-26, and 28 were taken from Refs. 9 and 12; those for compounds 4, 7, and 9 were taken from Ref. 13. The values of I_1^{11} for compounds 6 and 10 were taken from Ref. 14. The values of I_1^{11} for compounds 30, 31, 32, and 34 were taken from Ref. 12; that for compound 36 was taken from Ref. 15

For σ_1 , σ_R^+ , and $\sigma_p^+ = \sigma_1 + \sigma_R^+$ values for substituents X in compounds 1–29, see Refs. 8 and 16.

The σ_{α} parameters for substituents X in compounds 1–29, 31, and 37 ¹⁶ and 30, 32–36, 38, and 39 ⁸ were taken from the literature or calculated using the previously described procedure. 17

e The value for PhX.2.7.8

[∫] The value for HC≡CX calculated in this work.

 σ_1 , σ_R^+ , and σ_p^+ ($\sigma_p^+ = \sigma_1 + \sigma_R^+$) constants affect the I_1 value in $R_{\pi}X$. The quality of correlation equations (5)—(10) decreases on going from $R_{\pi} = Ph$ to $R_{\pi} = H_2C=CH$ and HC=C (the correlation coefficient r decreases and the standard error S_Y increases), i.e., the contribution of an additional factor to the I_1 value increases as R_{π} changes in this series. As follows from the results of previously reported studies, ^{16,22} this factor is the effect of polarizability of substituents X. The positive charge q of radical cations formed upon photoionization of molecules $R_{\pi}X$ in the gas phase induces a dipole moment of the substituent X. In the classical electrostatics, the energy of charge stabilization (the electrostatic attraction between the charge and the induced dipole moment) is defined as

$$E_{\alpha} = -\frac{q^2 \alpha}{2eR^4},\tag{11}$$

where α is the polarizability of X, ϵ is the dielectric constant, and R is the distance between the charge and the induced dipole. Considerable difficulties in the use of approximation (11) for calculating $E_{\rm st}$ for a number of $R_{\pi}Alk$ systems arise when the charge and induced dipole are parts of the same ion.²²

In another approach, $^{16.23}$ the polarizability effect of substituents is characterized by σ_{α} constants obtained from *ab initio* quantum-chemical calculations of electrostatic polarization potentials. The relationship between I_1 and σ_{α} (as a quantitative measure of stabilization of the charge q of the radical cation due to polarizability of substituent X) follows from Eq. (2). The degree of stabilization of the charge q increases and, hence, the total energy E_{tot}^{+} of the radical cation and the I_1 value decrease as the negative σ_{α} values increase (see Table 1).

Taking account of this parameter leads to Eqs. (12)—(17). The statistical characteristics of these equations are much better as compared to those of Eqs. (5)—(10):

$$I_1^1 = 9.29 + 0.91\alpha_p^+ + 0.47\alpha_\alpha$$
 (12)
 $(S_a = 0.05, S_b = 0.04, S_c = 0.11, S_Y = 0.12, r = 0.981, n = 26),$

$$I_1^{111} = 10.43 + 1.40\sigma_p^+ + 0.63\sigma_\alpha$$
 (13)
 $(S_a = 0.07, S_b = 0.07, S_c = 0.14, S_Y = 0.16, r = 0.970, n = 27).$

$$I_1^{11} = 11.28 + 1.47\sigma_p^+ + 1.42\sigma_\alpha$$
 (14)
 $(S_a = 0.10, S_b = 0.12, S_c = 0.20, S_Y = 0.18, r = 0.968, n = 19),$

$$I_1^1 = 9.25 + 1.00\sigma_1 + 0.89\sigma_R^+ + 0.42\sigma_{\alpha}$$
 (15)
 $(S_a = 0.08, S_b = 0.13, S_c = 0.04, S_d = 0.13, S_Y = 0.12, r = 0.980, n = 26),$

$$I_1^{\text{III}} = 10.49 + 1.27\sigma_1 + 1.43\sigma_R^+ + 0.70\sigma_\alpha$$
 (16)
 $(S_a = 0.11, S_b = 0.17, S_c = 0.08, S_d = 0.17, S_Y = 0.16, r = 0.970, n = 27),$

$$I_1^{11} = 11.43 + 1.09\sigma_1 + 1.79\sigma_R^+ + 1.53\sigma_{\alpha}$$
 (17)
 $(S_a = 0.11, S_b = 0.19, S_c = 0.17, S_d = 0.18, S_Y = 0.16, r = 0.975, n = 19).$

It is possible to calculate the contributions of the inductive (In), conjugation (Res), and polarizability effects (P) of the substituent to I_1 from Eqs. (15)—(17). If these dependences are written in general form $I_1 = a +$ $b\sigma_1 + c\sigma_R^+ + d\sigma_\alpha$, then $In = b\sigma_1$, $Res = c\sigma_R^+$, and P = $d\sigma_{\alpha}$ (Table 2). For each series of compounds (PhX, H₂C=CHX, and HC≈CX), the overall ranges of changes in contributions under consideration and ratios upon varying the σ_I , σ_R^+ , and σ_{α} parameters in the series from minimum to maximum values and the values of changes in the I_1 ionization potentials of benzene (ethylene, acetylene) due to the introduction of Me and CMe₃ substituents, which have close values of σ_1 and σ_R^+ parameters but differ strongly in σ_R values, are listed in Table 2. It can be seen in Table 2 that the contributions of In, Res, and P and the ratios P/Res and P/(In + Res) in the series and between the series vary over a wide range. However, for any X the contribution P as well as the P/Res and P/(In + Res) ratios increase in the sequence Ph < H₂C=CH < HC≡C as R_{*} changes from Ph to $H_2C=CH$ and HC=C.

Qualitatively, the increase in the contribution P in this series can be explained using formula (11). In the

Table 2. The inductive (In), resonance (Res), and polarization (P) components of changes (In + Res + P) in the I_1 ionization potentials of benzene, ethylene, and acetylene caused by introduction of organic substituents X

Compo-	X	In		Res		P		ln + Res + P		P	P
und		eV	Δ/1 (%)	eV	ΔΙ ₁ (%)	eV	Δl ₁ (%)	eV	ΔI_1 (%)	Res	In + Res
PhX	Me	0.05	12	0.23	53	0.15	35	0.43	100	0.65	0.53
	Bu ^t	0.07	13	0.17	30	0.32	57	0.56	100	1.88	1.33
	The overall range										
	for the series	0.72	23	2.01	65	0.38	12	3.11	100	0.19	0.14
H ₂ C≈CHX	Mc	0.06	' 9	0.37	55	0.24	36	0.67	100	0.65	0.56
-	Bu ^t	0.09	10	0.27	31	0.52	59	0.88	100	1.93	1.44
	The overall range										
	for the series	0.76	19	2.54	65	0.61	16	3.91	100	0.24	0.18
HC≅CX	Me	0.05	5	0.46	44	0.54	51	1.05	100	1.17	1.06
	But	0.08	5	0.34	22	1.15	73	1.57	100	3.38	2.74
	The overall range										
	for the series	0.64	18	1.65	45	1.35	37	3.64	100	0.82	0.59

case of R_{π} = Ph the charge of the radical cation $R_{\pi}Me_3^+$. is delocalized over the aromatic ring (the degree of delocalization is equal to 70% for the phenyl cation).²⁷ For R₂ = H₂C=CH and HC=C, the efficiency of charge delocalization decreases. The energy of charge stabilization is strongly dependent on the distance R (Eq. (11)). This makes it possible to consider, in the first approximation, the interaction of substituent Me only with the charge of the neighboring carbon atom. Then the numerator of the fraction in formula (11) is minimum for R_{π} = Ph. The C_{ar} -Me, =C-Me, and \pm C-Me distances in neutral compounds R_xMe are equal to 1.51, 1.51, and 1.47 Å, respectively; those in radical cations are shortened by ~0.05 Å.25,28 Therefore, the denominator of the fraction in formula (11) is minimum for $R_x = C = CH$. Hence, stabilization of the positive charge in radical cations due to polarizability of the substituent, the value of contribution P, and the coefficients at σ_{α} in Eqs. (12)-(14) and (15)-(17) increase as R_{π} changes in the series Ph < H₂C=CH < HC≡C.

Let us consider now the conjugation in radical cations formed upon separation of an electron from the HOMOs of molecules $R_{\pi}X$ (X are organic substituents). In a conventional version of the PMO method^{7,8} the quantitative measure of conjugation is the perturbation energy δE , which can be calculated from the relationship

$$\delta E = E_{\text{HOMO}} - E(\pi), \tag{18}$$

where $E(\pi)$ is the energy of the initial unperturbed orbital, which is dependent on only the inductive effect of substituents X. Relationship (18) is based on the Koopmans approximation (4), which is too rough in our case. Let us make a more accurate estimation of δE taking $R_{\pi} = Ph$ as an example. Using Eq. (15), the HOMO energy of radical cations can be defined as

$$E^{I}_{HOMO} = -(I_{1}^{I} - 0.42\sigma_{\alpha}).$$
 (19)

In this case

$$E(\pi) = -9.24 + \sigma_1. \tag{20}$$

Then

$$\delta E^{\dagger} = -(I_1^{\dagger} - 0.42\sigma_{\alpha}) - (-9.24 + \sigma_1). \tag{21}$$

The δE^{HI} and δE^{HI} values (see Table 1) for the H₂C=CHX and HC=CX series were calculated in a similar way.⁸

The δE values are related to σ_R^+ constants of substituents X by linear dependences

$$\delta E^{1} = -0.89 \sigma_{R}^{+} - 0.04$$

($S_{2} = 0.04$, $S_{b} = 0.03$, $S_{Y} = 0.12$, $r = 0.977$, $n = 26$),

$$\delta E^{HI} = -1.43\sigma_R^+ - 0.02$$

($S_a = 0.08$, $S_b = 0.04$, $S_Y = 0.16$, $r = 0.966$, $n = 27$),

$$\delta \mathcal{L}^{41} = -1.81\sigma_{\text{R}}^{-1} + 0.04 (S_3 = 0.16, S_5 = 0.04, S_7 = 0.15, r = 0.942, n = 19).$$
 (24)

The absolute terms in Eqs. (22)—(24), comparable to standard deviations, can be neglected. Comparison of the slopes of the straight lines (22)—(24) shows that conjugation of substituents X with electron-deficient radical cationic centers increases as R_{π} changes in the sequence Ph < $H_2C=CH$ < HC=C.

Using Eq. (17) and σ_{α} values determined previously, we calculated the $\sigma_R^+(II)$ parameters of organoelement substituents bonded to the triple bond (see Table 1, compounds 30–32, 34, 36). The $\sigma_R^+(II)$ parameters differ from the $\sigma_R^+(I)$ and $\sigma_R^+(III)$ parameters for the same substituents bonded to the benzene ring or to the double bond. Thus, the $\sigma_R^+(I)$, $\sigma_R^+(II)$, and $\sigma_R^+(II)$ values for the CH₂SiMe₃ substituent are equal to -0.49, -0.65, and -0.74, respectively. Despite the fact that the σ_R^+ parameters of organoelement substituents are not universal, the following linear dependences are valid for them

$$\sigma_R^+(111) = 1.38\sigma_R^+(1)$$
 (25)
($S_2 = 0.10, S_Y = 0.11, r = 0.975, n = 12)^8,$

$$\sigma_R^+(II) = 1.56\sigma_R^+(I)$$
 (26)
(S_a = 0.16, S_Y = 0.07, r = 0.985, n = 5)

(see Table 1, the $\sigma_R^+(II)$ and $\sigma_R^+(I)$ values for the substituents in compounds 30-32, 34, and 36).

Corrections of the coefficients in relationships (25) and (26) are inevitable as new information $I_1^{\rm III}$ and $I_1^{\rm III}$ for compounds with organoelement substituents becomes available. At the same time, they can be used to estimate the $\sigma_R^+({\rm III})$ and $\sigma_R^+({\rm III})$ values that have only been reported in Ref. 8 and in this work.

In conclusion, we present relationships that are valid for the compounds PhX, H₂C=CHX, and HC=CX studied in this work and earlier⁸ and any substituents X:

$$I_1^1 = 9.27 + 0.94\sigma_1 + 0.91\sigma_R^+ + 0.43\sigma_\alpha$$
 (27)
 $(S_a = 0.06, S_b = 0.11, S_c = 0.04, S_d = 0.09, S_Y = 0.12, r = 0.980, n = 35),$

$$I_1^{111} = 10.50 + 1.23\sigma_1 + 1.43\sigma_R^+ + 0.69\sigma_\alpha$$
 (28)
 $(S_a = 0.08, S_b = 0.14, S_c = 0.05, S_d = 0.13, S_Y = 0.13, r = 0.981, n = 37),$

$$I_1^{11} = 11.43 + 1.08\sigma_1 + 1.79\sigma_R^+ + 1.53\sigma_{\alpha}$$
 (29)
 $(S_a = 0.08, S_b = 0.16, S_c = 0.12, S_d = 0.14, S_Y = 0.14, r = 0.985, n = 24).$

In these relationships the resonance effects of organic substituents are characterized by conventional σ_R^+ constants^{8,16} while those of organoelement substituents are characterized by $\sigma_R^+(I)$ (tabulated values^{2,7,8}), $\sigma_R^+(III)$ (the literature data⁸) and $\sigma_R^+(II)$ (this work) parameters.

References

 A. N. Egorochkin, Usp. Khim., 1992, 61, 1092 [Russ. Chem. Rev., 1992, 61, 600 (Engl. Transl.)].

- A. N. Egorochkin and G. A. Razuvaev, Usp. Khim., 1987,
 1480 [Russ. Chem. Rev., 1987, 56, 846 (Engl. Transl.)].
- A. N. Egorochkin, S. E. Skobeleva, E. T. Bogoradovskii, and T. P. Zubova, Izv. Akad. Nauk, Ser. Khim., 1994, 1041 [Russ. Chem. Bull., 1994, 43, 976 (Engl. Transl.)].
- A. N. Egorochkin, S. E. Skobeleva, and T. G. Mushtina, *Izv. Akad. Nauk, Ser. Khim.*, 1995, 289 [Russ. Chem. Bull., 1995, 44, 280 (Engl. Transl.)].
- P. G. Sennikov and A. N. Egorochkin, *Usp. Khim.*, 1982,
 51, 561 [Russ. Chem. Rev., 1982, 51 (Engl. Transl.)].
- A. N. Egorochkin, G. A. Razuvaev, and M. A. Lopatin, J. Organomet. Chem., 1988, 344, 49.
- A. N. Egorochkin, S. E. Skobeleva, and T. G. Mushtina, *Izv. Akad. Nauk, Ser. Khim.*, 1997, 70 [Russ. Chem. Bull., 1997, 46, 65 (Engl. Transl.)].
- A. N. Egorochkin, S. E. Skobeleva, and T. G. Mushtina, *Izv. Akad. Nauk, Ser. Khim.*, 1997, 1626 [Russ. Chem. *Bull.*, 1997, 46, 1549 (Engl. Transl.)].
- V. I. Vovna, Elektronnaya struktura organicheskikh soedinenii [The Electronic Structure of Organic Compounds], Nauka, Moscow, 1991 (in Russian).
- H. Bock and B. Solouki, in The Chemistry of Organic Silicon Compounds, Eds. S. Patai and Z. Rappoport, Wiley, Chichester, 1989, P. 1, 555.
- M. Aoyama, S. Mosuda, K. Ohno, Y. Harada, M. C. Yew, H. H. Hua, and L. S. Yong, J. Phys. Chem., 1989, 5414.
- V. I. Nefedov and V. I. Vovna, Elektronnaya struktura organicheskikh i elementoorganicheskikh soedinenii [The Electronic Structure of Organic and Organoelement Compounds], Nauka, Moscow, 1989 (in Russian).
- L. V. Gurvich, G. V. Karachevtsev, V. N. Kondrat'ev, Yu. A. Lebedev, V. A. Medvedev, V. E. Potapov, and Yu. S. Khodeev, Energii razryva khimicheskikh svyazei. Potentsialy ionizatsii i srodstvo k elektronu [Energies of Chemical Bond Cleavage. Ionization Potentials and Electron Affinity], Nauka, Moscow, 1974 (in Russian).

- V. I. Vovna and F. I. Vilesov, in *Uspekhi fotoniki [Advances in Photonics*], Izd. Leningr. Univ., Leningrad, 1975, Isue 5, 3 (in Russian).
- 15. H. Bock and H. Seidl, J. Chem. Soc., B, 1968, 1158.
- C. Hansch, A. Leo, and R. W. Taft, Chem. Rev., 1991, 91, 165.
- R. W. Taft, I. A. Koppel, R. D. Topsom, and F. Anvia, J. Am. Chem. Soc., 1990, 112, 2047.
- V. I. Nefedov and V. I. Vovna, Elektronnaya struktura khimicheskikh soedinenii [The Electronic Structure of Chemical Compounds], Nauka, Moscow, 1987 (in Russian).
- D. P. Chong, F. G. Herring, and D. McWilliams, J. Chem. Phys., 1974, 61, 78.
- S. Marriott and R. D. Topsom, J. Mol. Struct., 1984, 106, 277.
- C. D. Johnson, The Hammet Equation, Cambridge University Press, 1973.
- G. G. Furin, A. Sh. Sultanov, and I. I. Furlei, Izv. Akad. Nauk SSSR, Ser. Khim., 1987, 580 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1987, 36, 530 (Engl. Transl.)].
- J. Nordgren, L. Selander, L. Pettersson, R. Brammer, M. Backstrom, C. Nordling, and H. Agren, Chem. Phys., 1984, 84, 334.
- J. P. Maier and D. W. Turner, J. Chem. Soc., Faraday Trans. 2, 1973, 69, 521.
- P. D. Pacey and Q.-T. N. Tan, J. Phys. Chem., 1995, 99, 17729.
- W. J. Hehre, C.-F. Pau, A. D. Headley, R. W. Taft, and R. D. Topsom, J. Am. Chem. Soc., 1986, 108, 1711.
- J. D. Dill, P. V. R. Schleyer, J. S. Binkley, R. Seeger, J. A. Pople, and E. Haselbach, J. Am. Chem. Soc., 1976, 98, 5428.
- S. Lunell, L. A. Eriksson, and M.-B. Huang, J. Mol. Struct., THEOCHEM, 1991, 230, 263.

Received July 7, 1997; in revised form January 8, 1998